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Abstract

This work presents an uncertainty analysis applied to the results of an ecological 
model. This model describes the development of submerged macrophytes 
colonization in a brazilian reservoir, between Sao Paulo and Parana states. To 
build the model we map the submerged vegetation with hydroacoustic technique to 
estimate submerged canopy height. Data about the light penetration into the water 
were also collected in some points. The dynamic model was elaborated with two 
variables: depth and attenuation coefficient (kt). Monte Carlo technique was used 
to evaluate how the existing uncertainty in the data acquisition process and 
measurement tools, propagated to the kriging interpolation, affects the model 
results.  It was possible to evaluate the model output histograms, and the Root 
Mean Square Error (RMSE) of each simulated point in relation to the observed 
one. The confidence intervals were also calculated with the 5th and 95th 
percentiles. With this uncertainty analysis, the interval time and the points with the 
lowest uncertainty could be identified. 
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1.   Introduction 

Models are simplified representations of the reality. Because of this, they have a 
limited scope, due to unknown features or natural changes which cannot be com-
pletely evaluated. So, there are sources of uncertainty that must be analyzed in 
order to determine their influences.

Among the sources of uncertainty, it is possible to enumerate: measurement er-
rors, errors in mathematical formulation, parameters or due to unpredictable chang-
es (Mulligan and Wainwright, 2004). In spatial explicit models, there are also in-
terpolation and positioning errors (Heuvelink et al., 2010). 

Uncertainty analysis can be performed analytically, using Taylor series or  nu-
merical methods, as Monte Carlo technique, an approach that consists in repeatedly 
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running the model, using as inputs the variable values sampled from their distribu-
tion probability functions. After simulation, it is possible to analyze the percentiles 
of the results to estimate the confidence intervals that quantify uncertainty (van Nes 
and Scheffer 2003).

Many related works have been investigating issues of uncertainty in the model-
ling process (Refsgaard et al., 2007; Heuvelink et al., 2007; Yeh and Li, 2003).

The application domain of this modelling is the colonization in reservoir by a 
kind of submerged vegetation called macrophytes. This vegetation type has devel-
oped excessively in tropical water bodies, causing ecological and economic dam-
ages (Michelan et al., 2010; Sousa et al., 2010). 

The infestation of macrophytes hinders navigation, and recreation.  In economic 
terms, hydroelectric power plants are seriously affected, since it is necessary to stop 
the production many times during the year to remove vegetation retained in tur-
bines. Because of these issues, a way of controlling the proliferation must be ap-
plied in order to manage further economic and ecological concerns. 

The aim of this study is to analyze uncertainty of the model results. This model 
describes the spatiotemporal dynamics of submerged macrophytes in reservoirs. 

The paper is structured as follows. In Section 2 the applied methodology is pre-
sented. In Section 3 the preliminary results are discussed. In Section 4 we draw 
some conclusions of the work.

2.   Methodology 

The study area is located in Paranapanema river, near Santo Inácio city, state of 
Paraná, in Brazil, at coordinates UTM 22S 424900E, 7497750N and 425100E, 
7497900N, as illustrated in Figure 1. It is a portion of about 20000m2

In these surveys, the submerged vegetation was measured with an echosounder 
which, based on hydroacoustic technique (sonar), estimates bathymetry and the 
canopy height (Sabol et al., 2002; Valley et al., 2005). Biosonics DT-X model was 
used, which operates in frequencies between 38 kHz and 1000 kHz and measures 
depths below 1000 meters. In order to map it is necessary to ride on boat, with the 
transducer coupled to a GPS (Global Positioning System). Each point provides 
information about coordinates, depth, and canopy height. Figure 1 shows the points 
acquired in a survey.

of Taquaruçu 
reservoir, where the depth ranges from 0.7m to 5m. Four field surveys had been 
made, from April to August, 2010.

After acquiring the samples, the data were imported to an Geographical Informa-
tion Systems (GIS), interpolated with kriging method, and the growth of the vegeta-
tion was calculated by the difference among surfaces of two consecutive surveys. 
Because of this, growth is refered by time intervals, called in this text by s1-s2, s2-
s3 and s3-s4, which are related to the differences observed from survey 1 to 2, 2 to 
3 and 3 to 4, respectively.

The model that describes the vertical plant development can be called hybrid, 
because is based on the logistic theoretical model (Renshaw, 1991), by replacing 
the growth rate by a linear combination of the variables kt and depth. Besides, it 
has an empirical characteristic, due to the calibration process of the weights, carried 
out using the interpolated data.
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After elaborating a conceptual model, an equation which describes canopy 
height variation rate (dh) was formulated (Equation (1)), where depth is measured 
by echosounder, kt represents attenuation coefficient of the light penetration into 
the water, k1 and k2

Figure 1: Study area

are the weights of the linear combination, h is the canopy 
height and the 0.7 constant is the carrying capacity, obtained of the maximum value 
of canopy height found during the surveys.
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hkkt+kdepth=
dt
dh (1)

To calibrate the coefficients k1 and k2

In order to verify the uncertainty of the model, the two input parameters (depth
and kt) and the initial condition of the dependent variable were represented by a 
normal distribution. The mean parameter of this distribution was specified using the 
measured value for the kt variable. The interpolated value for depth and the initial 
condition of the differential equation, which describes the canopy development, 
were used as mean of their distributions. The standard deviation of kt was calcu-
lated from the collected data in each date. The variance map generated by the 
kriging interpolation (3m resolution) produced the standard deviation of both, depth 
and canopy height. 

of Equation (1), the evolutionary approach 
of genetic algorithms has been used (Madsen, 2003). To validate the results,  root 
mean square error (RMSE) metric was computed and the value obtained was 
0.02067m, about 18% of the maximum growth value of the validation data. 

Twelve sample elements used in validation phase were submitted to one hundred 
thousand simulations. These sample elements represent four georeferenced points 
changing in three time intervals. changing in three time intervals.

3.   Preliminary results

The histograms calculated with simulated data for each validation element are in 
Figure 2. All points of interval s1-s2 and the point 2 of interval s3-s4 present less 
flattening, and it resulted in a lower uncertainty.
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Figure 3 shows the RMSE boxplots of simulated data, by validation point. The 
median of simulated data is smaller than the RMSE found in validation model 
(lower horizontal line at 0.02m), in 8 of 12 points. The upper horizontal line repre-
sent the maximum residual found in validation phase (0.04 m). It shows that only 
the points p1, in s3-s4 and p4, in s1-s2, had the third quartile above 0.04 m.

Figure 2: Simulated growth histograms

Figure 3: RMSE boxplot by point. Lower horizontal line points the RMSE and the upper 
horizontal line (dashed) marks the maximum residual.

The confidence interval of each point is presented in Figure 4. It was determined 
with the 5th and 95th percentiles of simulated data. In this graphic it is possible to 
compare the confidence intervals of stochastic results, for each point, in relation to 
the deterministic results and the observed values. 
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By analyzing the graphic, it is noted that 3 of 12 observed points of this plot are 
outside of the confidence interval: point p1, from s3-s4 and the points p3 and p4, 
from s1-s2 time interval.

We also noticed in Figure 4 that, concerned with interval confidence width, the 
lowest uncertainty is in the interval s1-s2 for all points. The point p2, of interval s3-
s4, also has low uncertainty compared to the others of the same interval. In spatial 
terms, the point p2 presents the lowest uncertainty, given the confidence interval 
width in each time period. Besides, this is the point that presents the best  result 
compared with observed data, since the temporal trend is well represented. 

Figure 4: Confidence intervals of 5th and 95th percentiles

Figure 5: Cumulative distribution of RMSE

In Figure 5, the cumulative probability for RMSE of simulated data is showed. 
The vertical line in this plot marks the cumulative probability for 0.02m, about the 
same RMSE obtained in validation phase. The probability calculated based on 
simulations to this value was 0.52, indicating that about half of simulated data were 
above RMSE. When the the maximum residual was considered (0.04m), 88.1% of 
simulated data were below this maximum value.

3. Conclusion 

With this analysis, we could realize that the uncertainty is distributed in a het-
erogeneous way, both in space and time. The s1-s2 interval presented the smallest 
confidence interval and the point p2 had the lowest uncertainty of the twelve points 
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considered. The 88.1% percentage of points below maximum residual is considered 
reasonable.  

Future works include the evaluation of a bigger amount of points in order to 
generate surfaces to represent uncertainty.
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